0040-4039/80/0708-2753\$02.00/0

Tetrahedron Letters Vol.21, pp2753-2756 © Pergamon Press Ltd. 1980. Printed in Great Britain

ASYMMETRIC SYNTHESIS OF OPTICALLY PURE (R)(-)-2-ACETYL-5,8-DIMETHOXY-7,2,3,4-TETRAHYDRO-2-NAPHTHOL, A KEY INTERMEDIATE FOR OPTICALLY ACTIVE ANTHRACYCLINONE SYNTHESIS

> Shiro Terashima,* Norihiko Tanno, and Kenji Koga Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan

<u>Summary</u>: Asymmetric reduction of 2-acety1-5,8-dimethoxy-3,4-dihydronaphthalene(3) with lithium aluminum hydride partially decomposed with (-)-N-methylephedrine and N-ethylaniline was found to give the optically active allylic alcohol((-)-4) in 92% optical yield. Optically pure (-)-4 obtained in 87% yield based on 3 by recrystallization, was elaborated to the title compound((R)(-)-1) according to the reaction scheme exploited in the preceding paper.

In the preceding paper,¹⁾ we have described the novel synthetic route to racemic 2-acetyl-5,8-dimethoxy-1,2,3,4-tetrahydro-2-naphthol((±)-1), a versatile synthetic intermediate of racemic anthracyclinone syntheses,²⁾ from readily available 5,8-dimethoxy-3,4-dihydro-2-naphthoic acid(2).³⁾ In order to apply the exploited synthetic scheme¹⁾ to the production of optically active (R)(-)-1,⁴⁾ being potentially useful for the syntheses of optically active anthracyclinones,^{2,5,6)} an efficient method which could effect the asymmetric reduction of 2-acetyl-5,8-dimethoxy-3,4-dihydronaphthalene(3) derived from 2,¹⁾ was sought.

We have now found that the asymmetric reduction of 3 can be readily accomplished in high chemical and optical yields by employing lithium aluminum hydride(LiAlH₄) partially decomposed with (-)-N-alkylephedrine⁷⁾ and N-alkylaniline, as a reducing agent.

Reduction of 3^{1} with LiAlH₄(3.3 eq) partially decomposed with (-)-N-methylephedrine(3.4 eq) and N-ethylaniline(6.8 eq) in ether at -78°C for 3 hr, was found to give the optically active allylic alcohol((-)-4), ^{8a,9,10} mp 85-87°C, $[\alpha]_D^{20}$ -18.9°(c=1.77, EtOH), in 94% yield after quenching with 5% aq HCI(stoichiometric amount¹¹), extractive isolation with ether, and purification with preparative tlc(silica gel, C₆H₆-EtOAc 8:1). Recrystallization of this sample from hexane gave optically pure (-)-4^{8,9,12} showing mp 88-89°C and $[\alpha]_D^{20}$ -20.5°(c=1.07, EtOH) in more than 80% yield based on 3. Based on the optical rotation of optically pure (-)-4, the optical yield of the asymmetric reduction can be estimated as 92% ee.¹³

Results of the asymmetric reductions similarly examined by employing various amines as achiral additives, are summarized in <u>Table I</u>. It is quite obvious that N-alkylanilines having no steric hindrance in the vicinity of the nitrogen, especially N-ethylaniline, are the best achiral amine additives and that aliphatic secondary amines and heterocyclic amines afforded lower optical and chemical yields of (-)-4. Among other possible factors which may affect the optical and chemical yields of (-)-4, examinations on N-alkyl substituents of (-)-N-alkyl-ephedrines, 7 reaction solvents, and reaction temperatures were also carried out, affording the

i) LiAlH₄-(-)-N-methylephedrine-PhNHEt in Et₂0, -78°C, 6 hr. ii)DDQ(1.0 eq) in C₆H₆, rt, 1 hr. iii) t-BuOOH-VO(acac)₂ in C₆H₆, rt, 1.5 hr. iv) LiAlH₄ in THF, rt, 2 hr. v-viii) See ref. 1, <u>Scheme I</u>.

<u>Table I</u> Asymmetric Reduction of 2-Acety1-5,8-dimethoxy-3,4-dihydronaphthalene(3) by LiAlH₄ Decomposed with (-)-methylephedrine and Achiral Amine Additives^a)

	(-)-4					(-)-4	
Run	Achiral Amine Additives	Chemical () Yields(%)b)	Optical Yields(%) ^{C}}	Run	Achiral Amine Additives	Chemical Yields(%) ^b)	~Optical Yields(%) ^{c)}
1	PhNHMe	97	86	8	n-BuNHMe	7	_d)
2	PhNHEt	94	92	9	Cyclohex-NHMe	46	24
3	PhNHn-Bu	96	86	10	Pyrrolidine	0	-
4	PhNHt-Bu	36	13	11	Piperidine	16	27
5	3,5-DiMePhNHEt	95	80	12	Morpholine	23	7
6	2,6-DiMePhNHMe	62	2	13	Pyrrole	0	-
7	PhNHPh	94	84	14	Carbazole	18	_d>

a) All reactions were carried out using LiAlH₄(3.3 eq) partially decomposed with (-)-N-methylephedrine(3.4 eq) and achiral amine additives(6.8 eq) in ether at -78°C for 3 hr. b) Based on 3 after purification with preparative tlc(silica gel, $C_{\delta}H_{\delta}$ -EtOAc 8:1). c) Optically pure (-)-4 shows [α]_D²⁰-20.5°(c=1.07, EtOH). d) Measurement of optical rotation was not attempted

results shown in <u>Table II</u>. These studies definitely established the optimized reaction condition for the asymmetric reduction of \mathfrak{Z} .¹⁶)

<u>Table II</u> Effects of N-Alkyl Substituents of (-)-N-Alkylephedrines (\underline{A}) , Reaction Solvents (\underline{B}) , and Reaction Temperatures (\underline{C}) on the Asymmetric Reduction of 2-Acetyl-5,8-dimethoxy-3,4-dibydronanhthalene $(3)^{a}$

nyurunapii una iene (3)			<u>D</u>				<u>u</u>		
	A		(-)-4			(-))-4		
N-A1kyl	(-)- Chemical Yields(%) ^{b)}	4 Optical Yields(%)c)	Solvents	Chemical Yields(%)	b) Yields(%)	c)Temp. (C°)	Chemical Yields(%)	b)Optical Yields(%)C)	
Substs.			Ether	94	92	+35	95	69	
Me	94	92	THF	59	5	0	98	7 9	
Et	73	76	Toluene	62	28	-20	93	82	
i-Bu	58	75	DME	16	_a)	-78	94	92	
PhCH ₂	82	82	Methylal	0	-	-100	53	92	

a) All reaction were performed using LiAlH₄ partially decomposed with (-)-N-alkylephedrine(for <u>A</u>)(3.4 eq) or (-)-N-methylephedrine(for <u>B</u> and <u>C</u>)(3.4 eq) and N-ethylaniline(6.8 eq) in ether (for <u>A</u> and <u>C</u>) at -78° C(for <u>A</u> and <u>B</u>) for 3 hr. b-d) See Table I, footnote b-d).

In a large scale preparation of (-)-4, evaporation of the ethereal extracts obtained after 6 hrs' reaction, gave crude optically active (-)-4, ^{8a,9,10} [α]²⁰₀-18.8°(c=1.83, EtOH), 92% ee, in 100% yield. Direct recrystallization of this sample from hexane afforded optically pure (-)-4, ^{8,9} mp 88-89°C, [α]²⁰₀-20.4°(c=1.55, EtOH), in 87% yield based on 3. Evaporation of the mother liquor from the recrystallization yielded (-)-4^{8a,9} of low optical purity, [α]²⁰₀ -3.6°(c=2.79, EtOH), 18% ee, in 15% yield, which on oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone(DDQ), recovered 3¹ in 94% yield. From the aqueous layer which was obtained by quenching with 5% HCl, a mixture of (-)-N-methylephedrine and N-ethylaniline was recovered as an oil in 98% yield by successive treatment with aq NaOH and extractive isolation with ethyl acetate. Fractional distillation of the mixture gave (-)-N-methylephedrine, bp 120°C(0.01 mmHg), [α]²⁰₀-29.1°(c=4.59, MeOH), without racemization and N-ethylaniline, bp 87-90°C(15 mmHg), in 83% and 100% recovery yields, respectively.

Preparation of (R)(-)-1 from optically pure (-)-4 was readily accomplished according to the previously established reaction scheme.¹⁾ Thus, epoxidation of (-)-4 gave a diastereomeric mixture of the α ,B-epoxy alcohols(5 and 6)^{8a,9)} as an unstable oil, which, without separation, was subjected to reduction, giving the crystalline vfcinal-diol as a mixture of two diastereomers((-)-7 and 8),^{8a,9)} mp 140-150°C, $[\alpha]_{20}^{20}$ -39.3°(c=1.04, EtOH). The predominantly formed diastereomer((-)-7),^{8,9)} mp 154-155°C, $[\alpha]_{20}^{20}$ -49.7°(c=0.50, EtOH), could be isolated by recrystallization from ether. Oxidation of (-)-7 with Fetizon reagent followed by recrystallization from chloroform-ether gave optically pure (R)(-)-1,^{8a,9,12} mp 128-129°C, $[\alpha]_{20}^{20}$ -47.1° (c=1.11, CHCl₃)(lit.,³⁾ mp 128-129°C, $[\alpha]_{D}^{20}$ -48.2°(c=0.982, CHCl₃); lit.,⁵⁾ mp 130-132°C, $[\alpha]_{D}^{20}$ -50°(c=1, CHCl₃)). When the same oxidation was attempted using a mixture of (-)-7 and 8, partially optically active (R)(-)-1,^{8a,9} mp 123-127°C, $[\alpha]_{D}^{20}$ -42.5°(c=0.89, CHCl₃), was obtained after evaporation of the organic extracts. The optical purity of this sample calculated as 90% ee, reveals that the formation ratio of 5 to 6 on the epoxidation of (-)-4 is 95:5. This figure is in good agreement with the value for the racemic compound determined by NMR.¹

While the synthetic routes from (R)(-)-1 to optically active anthracyclinones such as

daunomycinone(9), adriamycinone(10), and 4-demethoxydaunomycinone(11) have been established,², optically pure (-)-7-deoxy-4-demethoxydaunomycinone dimethyl ether((-)-12),^{8a,9,12)} mp 139-140 °C, $[\alpha]_D^{20}-23.0^\circ(c=1.06, \text{ CHCl}_3)(\text{lit.},^{5a})$ mp 142-144°C, $[\alpha]_D^{20}-32^\circ(c=1, \text{ CHCl}_3))$, was prepared frc (R)(-)-1 according to the reported procedure.⁵) Tetracyclic (-)-12 is a key intermediate for the synthesis of 11, the aglycone of 4-demethoxydaunorubicin having improved therapeutic properties.²)

It is worth noting that, considering high chemical and optical yields, operational simplicity, use of readily available (-)-N-methylephedrine⁷⁾ as a chiral source, and efficient recovery of the chiral source after the reduction, the exploited asymmetric reduction of 3 might fulfill the criteria required for the practical asymmetric synthesis.¹⁷⁾

References and Notes

1) S. Terashima, N. Tanno, and K. Koga, Tetrahedron Letters, preceding paper.

- 2) See ref. 1, footnote 1.
- 3) S.-s. Jew, S. Terashima, and K. Koga, Chem. Pharm. Bull. (Tokyo), 27, 2351 (1979).
- 4) Chemical resolution of $(\pm)-1^{(5)}$ and the asymmetric halolactonization utilizing (S)-proline as a chiral source³⁾ have been employed for synthesizing optically pure (R)(-)-1.
- 5) a) F. Arcamone, L. Bernardi, B. Pateri, and A. Di Marco, Ger. Offen., 2,601,785(July 29, 1976).
 b) F. Arcamone, et al., Cancer Treat. Rep., 60, 829(1976).
- 6) See ref. 1, footnote 4.
- 7) T. Mashiko, S. Terashima, and S. Yamada, Yakugaku Zasshi, 100, 319(1980).
- 8) a) IR and NMR spectra were in agreement with the assigned structure. b) Satisfactory analytical data were obtained for this compound.
- 9) This sample showed identical chromatographic(tlc) and spectral(IR and NMR) properties with those of the racemic modification.¹⁾
- 10) Taking into account the stereochemistry in the epoxidation of (-)-4 and the successful synthesis of (R)(-)-1 from (-)-4, the absolute configuration of (-)-4 was deduced to belong to (S)-series. Asymmetric reduction of acetophenone by the same condition as for 3 afforded (S)(-)-1-phenylethanol, bp 160°C(5 mmHg)(bath temp.), $[\alpha]_D^{20}$ -37.2°(c≈5.10, cyclopentane), 86% ee, in 87% yield(S. Terashima, N. Tanno, and K. Koga, unpublished results). This result also supports the assigned absolute configuration of (-)-4.
- 11) Use of an excess amount of aq HCl gave rise to the racemization of (-)-4.
- 12) The optical purity of this sample was further ascertained by its NMR spectra recorded in the presence of chiral shift reagent($Eu(hfc)_{2}$).
- 13) Attempted asymmetric reductions of 3 according to the reported methods gave (-)-4 in lower chemical and optical yields(reducing agent; condition; chemical yield; optical yield). LiAIH₄(3.3 eq)-(-)-N-methylephedrine(3.3 eq)-m-xylenol(6.6 eq) in ether;¹⁴⁾ -20°C, 3 hr; 11%; 13% ee. LiAlH₄(2.36 eq)-(S)-2-(anilinomethyl)pyrrolidine(2.73 eq) in ether;¹⁵⁾ -78°C, 5 hr; 60%; 54% ee.
- 14) J.P. Vigneron and I Jacquet, Tetrahedron, 32, 939(1976).
- 15) M. Asami, H. Ohno, S. Kobayashi, and T. Mukaiyama, Bull. Chem. Soc. Japan, 51, 1869(1978).
- 16) The detailed reduction mechanism will be discussed in the full paper.
- 17) D. Valentine, Jr. and J.W. Scott, Synthesis, 1978, 329.

(Received in Japan 14 April 1980)